Analizator mini3D

zakres pomiarowy: 0,5 - 3500 µm 

 

 

 

Analizator IPS KF - Pyłomierz

zakres pomiarowy: 0,4 - 300 µm

Analizator IPS BP

zakres pomiarowy: 0,5 - 2000 µm 

Analizator P_AWK 3D

zakres pomiarowy: 0,1 - 15 mm 

Analizator 2DiSA

zakres pomiarowy: 0,5 - 2000 µm 

Analiaztor IPS P - Pyłomierz

zakres pomiarowy: 0,4 - 300 µm

Analizator IPS K - Pyłomierz

zakres pomiarowy: 0,4 - 300 µm

Analizator IPS UA

zakres pomiarowy: 0,5 - 2000 µm 

Analizator IPS GA

zakres pomiarowy: 0,5 - 300 µm 

Uśredniacz

Dla cząstek do 2 mm

Analizator IPS T

zakres pomiarowy: 0,4 - 300 µm

Analizator AWK D

zakres pomiarowy: 50 µm - 4 mm 

Analizator AWK B - do pomiaru uziarnienia

zakres pomiarowy: 1 - 130 mm 

Analizator IPS Q

zakres pomiarowy: 0,4 - 300 µm

Analizator IPS SAM

zakres pomiarowy: 0,4 - 300 µm

Stoisko do badania sprawności filtrów

zakres pomiarowy: 0,4 - 300 µm

Analizator AWK C

zakres pomiarowy: 0,2 - 31,5 mm 

Analizator IPS U

zakres pomiarowy: 0,5 - 600 µm 

Analizator AWK 3D

zakres pomiarowy: 0,2 - 31,5 mm 

Przyrządy

Jakość zgodna z ISO 9001

 

 

 

 

Co potrzebujesz zmierzyć?

Media społecznościowe

Pełna oferta

Podział przyrządów

Sprawdź podział przyrządów ze względu na rodzaj pomiaru

Projekty unijne

Infolinia: +48 22 666 93 32

Wybierz język:

Nieograniczony

KAMIKA Instruments

zakres poomiarowy

  1. pl
  2. en
  3. ru

ABSTRAKT

Dla szybkiego automatycznego pomiaru wymiarów i kształtu ziarna można je mierzyć w czasie swobodnego spadania ziarna przez dwukierunkowe pole pomiarowe. W czasie spadania przekrój ziarna może być wielokrotnie mierzony z częstotliwością 500 kHz. Ilość pomiarów przy częstotliwości skanowania 500kHz umożliwia określenie trzeciego wymiaru. Spadające ziarno musi być odpowiednio usytuowane w przestrzeni pomiarowej, tak żeby jego ruch odbywał się wzdłuż jego najdłuższej osi. Taki ruch ziarna umożliwia specjalna, paraboliczna, drgająca rynna. Kształt ziarna jest obrabiany cyfrowo z rozdzielczością 128 bitów, w każdym z trzech kierunków, co daje możliwości analizy ponad 2 milionów różnych kształtów ziaren. Wyniki pomiarów różnych zbóż można ze sobą porównać.

 

POBIERZ ARTYKUŁ

 

 

AUTORZY

Stanisław Kamiński, Dorota Kamińska, KAMIKA Instruments

 

DZIEDZINA

Energetyka, Pomiar kształtu nasion

 

PRZYRZĄD

AWK 3D

 

SŁOWA KLUCZOWE

Ziarna, kształt nasion, pomiar 3D, pomiar nasion

 

ŹRÓDŁO

Konferencja: Rośliny energetyczne – hodowla, uprawa i wykorzystanie, Ostoja, wrzesień 2013

Powder&Bulk nr 1 (52), styczeń - luty 2017, str. 26-27, ISSN 1899-2021

 

ARTYKUŁ

 

Dotychczas używane "Kopciuszki" jako liczniki ziaren dobrze spełniały swoją rolę, ale żeby się czegoś więcej dowiedzieć o kształcie ziaren, to należałoby je wsypać  do jakiegoś naczynia, zalać żywicą i wykonać przekrój dla pomiaru kształtu ziaren. Innym sposobem jest fotografia rozsypanych ziaren, z której można odczytać tylko dwa wymiary.  Są to bardzo żmudne i wolne sposoby oceny ziaren.

 

Są jeszcze inne optyczne i komputerowe metody wykorzystujące polowy skaner 3D, gdzie w skomplikowany sposób trzeba przetwarzać  "chmurę punktów pomiarowych" na kształt ziarna. 

 

Obecnie opracowano przyrząd AWK 3D, przedstawiony na Rys. 1, który spełnia wymagania co do wszechstronności, precyzji i szybkości pomiaru ziaren zbóż. Dla opracowania przyrządu wykorzystano optyczno - elektroniczną metodę pomiaru oraz sposób usytuowania ziarna poruszającego się przez przestrzeń pomiarową układu optycznego. 

 

Rys. 1 Analizator AWK 3D

 

W tym celu należało ruch ziaren wydobywających się z lejkowatego pojemnika uporządkować w specjalnie drgającej rynnie, tak żeby ziarna spadały w przestrzeń pomiarową pojedynczo i pionowo wzdłuż swojej najdłuższej osi, jak to jest przedstawione na Rys. 2.

Rys. 2 Rynna analizatora AWK 3D

 

Szybkość poruszania sie ziaren  wzdłuż rynny jest stymulowana intensywnością drgań rynny. Prędkość początkowa ziaren na wysokości h jest do zaniedbania, natomiast odkąd ziarno traci kontakt z rynną następuje spadania swobodne i ziarno do płaszczyzny pomiarowej uzyskuje pozycję pionową. Jednoznacznie określona prędkość  ziarna w płaszczyźnie pomiaru V=(2gh)-1/2 pozwala określić długość ziarna przez ilość skanowań z częstotliwością 500 kHz (500 000 razy na sek.) 

 

Poprzeczny przekrój ziarna mierzy się wielokrotnie w czasie pionowego spadania przy pomocy układu pomiarowego przedstawionego na Rys. 3.

 

Rys. 3 Układ do pomiaru poprzecznych przekrojów ziarna

 

W analizatorze AWK 3D stworzona jest płaszczyzna optyczna (przestrzeń pomiarowa), wspólna dla dwóch jednakowych przetworników optycznych usytuowanych do siebie prostopadle (Rys. 3). Przy pomocy takich przetworników można uzyskać ciąg wyników opisujących profile powierzchni poruszającego się ziarna z dwóch kierunków i jednakową długość tych profili w trzecim kierunku.

 

Przetwornik optyczny (Rys. 3)  składa się z promiennika [1] oświetlającego układ optyczny [2], który formuje równoległą wiązkę promieniowania [3] o grubości kilkuset m. Układ optyczny [4] skupia promieniowanie wiązki [3] na fotoelemencie [5]. Przestrzeń pomiarowa zawarta jest pomiędzy układem optycznym [2] i [4]. Jeżeli przez przestrzeń pomiarową spadnie ziarno, to spowoduje ono rozproszenie promieniowania i zmianę natężenia prądu płynącego przez fotoelement. Zmiana natężenia będzie proporcjonalna do wymiaru spadającego elementu.

 

Trzy wymiary każdego ziarna są zapisywane w matrycy, np. 1263, co równe jest ponad dwóm milionom różnych kombinacji wymiarów. Ponadto profil każdego ziarna jest analizowany w czasie rzeczywistym, co daje precyzyjną informację o objętości i kształcie ziarna.

 

Powierzchnia pomiarowa analizatora AWK 3D może być dowolnie duża. Ze względów praktycznych ograniczono ją do wymiarów 40x40 mm, w której można zmierzyć ziarna o maksymalnej wielkości około 30 mm.

 

Do syntetycznej analizy kształtu ziaren można wykorzystać klasyfikację Zingga, która umożliwia podzielenie ziaren na kuliste - kubiczne, spłaszczone - dyskowate, wydłużone - walcowate i o ostrych wydłużonych kształtach, tzw. Klingach.  Można zmiennie i bardziej precyzyjne określać kształt ziaren czy małych owoców, jako elipsoidalne, dyskoidalne.
 

Rys. 4  Diagram pokazujący klasyfikację Zingga

 

Na Rys. 4  przedstawiono  klasyfikację według ZIngga, przy czym granicę kształtów do klasyfikacji można ustalać dosyć swobodnie, tutaj zostały określone na 0,67 wymiaru minimalnego do średniego i wymiaru średniego do maksymalnego czyli długości ziarna. Zdefiniowane w tych proporcjach kształty zajmują oddzielne pola na Rys. 4.

 

Rys. 5  Pomiar pszenicy z wieloma pokruszonymi ziarnami

 

 

Rys. 6  Pomiar selekcjonowanej pszenicy

 

Zgodnie z powyższymi definicjami można określić zbiór ziaren zbóż przedstawiony na Rys. 5, gdzie pomierzono pszenicę z wieloma pokruszonymi ziarnami. Pokruszone ziarna widoczne są w postaci niskich, ciemnoniebieskich słupków na diagramie. Po usunięciu większości zniszczonych ziaren, pomiar tego samego zbioru ziaren, widoczny na Rys. 6, jest bardziej skupiony. Oprócz diagramu program umożliwia uzyskanie wyniku w postaci analizy sitowej oraz rozkładu procentowego kształtu ziaren.

 

Rys. 7  Zeskanowane ziarno pszenicy

 

Ze względu na wielokrotne skanowanie pojedynczych ziaren, można zarejestrować w pamięci komputera kształt ziarna, co jest przedstawione na Rys. 7. Górna linia na Rys. 7 określa wynikowy przekrój widziany z jednego kierunku, a dolna z kierunku prostopadłego. Długość ziarna określa się przez ilość zliczeń. Takiego dokładnego pomiaru ziarna nie potrafi wykonać żaden inny przyrząd.

 

 

Literatura:

 

  1. Kamiński S., Kamińska D., 2007. Porównanie optyczno-elektronicznych metod pomiaru granulacji. Aparatura Badawcza i dydaktyczna, XII, 2-3, Warszawa, 85-93.

  2. Kamiński S., Kamińska D., Trzciński J., Automatyczna analiza wielkości i kształtu ziaren 3D z zastosowaniem analizatorów optyczno-elektronicznych, Materiały konferencyjne. 11th Baltic Sea Geotechnical Conference 2008. Gdańsk s. 6.

  3. Kamiński S., Trzciński J., 2008. Optyczno-elektroniczny sposób określania składu granulometrycznego gruntów i możliwości zastosowania w geologii inżynierskiej. Geologia Geologia 34/4 (2008), 623-632, Akademia Górniczo-Hutnicza.

  4. Zingg T., 1935. Beitrag zur Schotteranalyse. Mineralogische und Petrologische Mitteilungen 15, 39-140.

 

Analizator AWK 3D

Pomiar wymiarów i automatyczna analiza kształtów ziaren zbóż
18 lutego 2016