Analizator mini3D

zakres pomiarowy: 0,5 - 3500 µm 

 

 

 

Analizator IPS KF - Pyłomierz

zakres pomiarowy: 0,4 - 300 µm

Analizator IPS BP

zakres pomiarowy: 0,5 - 2000 µm 

Analizator P_AWK 3D

zakres pomiarowy: 0,1 - 15 mm 

Analizator 2DiSA

zakres pomiarowy: 0,5 - 2000 µm 

Analiaztor IPS P - Pyłomierz

zakres pomiarowy: 0,4 - 300 µm

Analizator IPS K - Pyłomierz

zakres pomiarowy: 0,4 - 300 µm

Analizator IPS UA

zakres pomiarowy: 0,5 - 2000 µm 

Analizator IPS GA

zakres pomiarowy: 0,5 - 300 µm 

Uśredniacz

Dla cząstek do 2 mm

Analizator IPS T

zakres pomiarowy: 0,4 - 300 µm

Analizator AWK D

zakres pomiarowy: 50 µm - 4 mm 

Analizator AWK B - do pomiaru uziarnienia

zakres pomiarowy: 1 - 130 mm 

Analizator IPS Q

zakres pomiarowy: 0,4 - 300 µm

Analizator IPS SAM

zakres pomiarowy: 0,4 - 300 µm

Stoisko do badania sprawności filtrów

zakres pomiarowy: 0,4 - 300 µm

Analizator AWK C

zakres pomiarowy: 0,2 - 31,5 mm 

Analizator IPS U

zakres pomiarowy: 0,5 - 600 µm 

Analizator AWK 3D

zakres pomiarowy: 0,2 - 31,5 mm 

Przyrządy

Jakość zgodna z ISO 9001

 

 

 

 

Co potrzebujesz zmierzyć?

Media społecznościowe

Pełna oferta

Podział przyrządów

Sprawdź podział przyrządów ze względu na rodzaj pomiaru

Projekty unijne

Infolinia: +48 22 666 93 32

Wybierz język:

Nieograniczony

KAMIKA Instruments

zakres poomiarowy

  1. pl
  2. en
  3. ru

ABSTRAKT

 

Kalibracja sitowa przyrządu optycznego polega na porównaniu rozkładów objętościowych (wagowych) uzyskanych za pomocą sit mechanicznych z analizą ilościowo-wymiarową zbioru cząstek przeliczonych na objętość. Porównania takie umożliwiają określenie kalibracji sitowej przyrządów optycznych.
 

 

POBIERZ ARTYKUŁ

 

 

AUTORZY

Kamiński Stanisław,  KAMIKA Instruments

 

DZIEDZINA

pomiary cząstek

 

PRZYRZĄD

 

 

SŁOWA KLUCZOWE

pomiar cząstek, kalibracja sitowa

 

ŹRÓDŁO

Powder&Bulk nr 6 (50), wrzesień 2016, str. 36-37, ISSN 1899-2021

 

ARTYKUŁ

 

Wstęp

 

Kalibracja sitowa przyrządu optycznego polega na porównaniu rozkładów objętościowych (wagowych) uzyskanych za pomocą sit mechanicznych z analizą ilościowo-wymiarową zbioru cząstek przeliczonych na objętość. Porównania takie umożliwiają określenie kalibracji sitowej przyrządów optycznych.
Dla pomiaru wymiaru cząstki najlepiej posługiwać się szczeliną optyczną przez którą przechodzi skolimowane promieniowanie światła. Na podstawie zmierzonej średnicy oblicza się powierzchnię kuli, stąd można wyliczyć masę cząstki i porównać ją z rozkładem masy na sitach mechanicznych i wyznaczyć kalibrację sitową dla przyrządu optycznego.


Sposób kalibracji
 

Kalibrację prowadzi się  stosując  do 2 mm kulki szklane, od 2 mm do 30 mm kulki metalowe zmierzone mikrometrem, a od 30 mm do 110 mm dokładne kulki z tworzywa lub gumy zmierzone suwmiarką. Każda cząstka może być określona tylko w jednej z klas wymiarowych. Mierząc zbiór cząstek kulistych referencyjnych porównujemy modę zbioru wzorcowego z modą zmierzonych cząstek i ten punkt na osi x ma wymiar mody wzorca, a na osi y wynik według A/C. Przy pomocy innych wymiarów wzorców wyznaczamy inne wartości kalibracji ograniczając ilość punktów do 9 punktów plus punkt 0. Następnie wyznaczamy krzywą tak, żeby wszystkie punkty się na niej znalazły. Według krzywej wyliczamy matryce na założoną liczbę wymiarów i ta matryca będzie służyła do określania wielkości cząstek.
 

Dla wyznaczonej matrycy amplitud impulsów dla cząstek kulistych można wyznaczyć matryce szerokości impulsów reprezentowaną przez sumaryczną ilość zliczeń szerokości szczeliny tworzącej przestrzeń pomiarową i średnicy impulsu cząstki w postaci impulsu.
 

Dla cząstek sferycznych kalibracja sitowa jest taka sama dla sit i pomiarów optycznych. Gdy cząstka ma kształt wydłużony, to charakterystyki sitowe i optyczne się rozchodzą.

 

Fig. 1 Kalibracja sferyczna cząstek według amplitudy impulsu
DM – maksymalny wymiar cząstki 
Dmode –   moda zbioru wzorcowych cząstek
PR – szerokość - wysokości szczeliny w przestrzeni pomiarowej 
A/C – wyniki pomiaru przetwornika analogowo-cyfrowego

 

Na Fig. 2 przedstawiona jest przestrzeń pomiarowa składająca się z dwóch oddzielnych i prostopadłych względem siebie torów pomiarowych, które są przedstawione na Fig. 3. Tory są niezależne od siebie, ale mają bardzo podobne charakterystyki pomiarowe. Uzyskuje się to przez dokładną regulację parametrów optycznych i elektronicznych. Dla przestrzennego zobrazowania cząstki trzeci wymiar uzyskuje się przez zliczanie czasu trwania ruchu cząstki w przestrzeni pomiarowej. To co widoczne jest na Fig. 3 musi być jednakowe dla obydwu wymiarów przy wzorcach sferycznych (kulach) jednorodnych optycznie.
 

Ruch cząstki przez szczeliny pomiarowe o szerokości PR na skutek zjawisk optycznych i elektronicznych charakteryzuje się zmianą napięcia w funkcji czasu w postaci impulsu. Mierząc amplitudę impulsu w dwóch prostopadłych kierunkach dla kuli uzyskuje się takie same impulsy i wartości FP1 i FP2. FP jest powierzchnią zajętą przez cząstkę w szczelinie i jest proporcjonalna do rzutu kształtu i wielkości cząstki. Z powierzchni FP można wyliczyć średnicę kuli w którą wpisana jest cząstka. Mierzona cząstka oprócz wymiarów geometrycznych charakteryzuje się prędkością V. Od prędkości V i częstotliwości przetwornika A/C zależy ilość zliczeń ZC1. Od ilości zliczeń cząstki o wymiarze DW zależy współczynnik K:

Fig. 2 Charakterystyka trójwymiarowego pomiaru

Fig. 3 Kalibracja szerokości cząstek według wzorców kulistych różnej wielkości
DM:         maksymalny wymiar cząstki sferycznej [μm] 
SM:         maksymalna szerokość impulsu 
ZM:         zliczenia według DM [szt.] 
PR:         wymiar przysłony [μm] 
ZC1:       zliczenia według DC1 kulek kalibracyjnych [szt.] 
DC1:      wymiar mody kulek wzorcowych większych od PR [μm] 
SW1:      szerokość według DC1 [μm]
S[PR]:    zmierzona szerokość według DC1 [μm]
SW2:      szerokość dla cząstek mniejszych od PR 
DC2:      wymiar mody kulek wzorcowych mniejszych od PR [μm]
ZC2 :      zliczenia według DC2 dla kulek kalibracyjnych mniejszych od PR [szt.] 
O:            zerowy poziom pomiaru szerokości 
K:            współczynnik kalibracyjny ZC1/DC1 
 

Do jednowymiarowego układu pomiarowego przy użyciu przetwornika A/C o małej częstotliwości rzędu 500 kHz może być użyty specjalny program kalibracyjny, który wyniki otrzymane według sit mechanicznych porównuje z ciężarami zmierzonymi na sitach i ciężarami obliczonymi według wyników optyczno-elektronicznych.
 

Dla wszystkich przetworników A/C o częstotliwości rzędu 12 MHz szerokość cząstki może być zliczana jako oddzielny pomiar z dokładnością ok. 1% w stosunku do dotychczasowego wymiaru cząstki.
 

Przy użyciu szybkiego przetwornika A/C pomiar szerokości cząstki znacznie się upraszcza. Pole pomiarowe cząstek zawarte jest na płaszczyźnie DM x SM, a przekątna tego pola OE (Fig. 2) zawiera tylko cząstki sferyczne.
 

Linię kalibracyjną OA przedstawiającą szerokość cząstki w funkcji ilości zliczeń można zamienić na linię OE, przy której szerokość wyrażona jest w [μm].
 

Kalibracje szerokości wykonuje się używając wzorca sferycznego DW, który po przejściu przez przestrzeń pomiarową daje ZW zliczeń. Linia OA jest linią wszystkich wzorców sferycznych od zera do DM. W tym zakresie zmierzoną dowolną cząstkę w punkcie N o parametrach DCD i ZCD można przeliczyć z ilości zliczeń według punktu P na wymiar w [μm] w punkcie Q.
Wymiar NP jest rzeczywistą odchyłką szerokości dowolnego wymiaru od szerokości cząstki sferycznej umiejscowionej w punkcie N.

 

Nachylenie linii OA zależy od współczynnika K, zaś nachylenie linii OE równe jest jedności, a wyliczone wcześniej odchylenie NP musi być podzielone przez wartość współczynnika K. Rzeczywisty wymiar szerokości cząstki równy jest:

Wszystkie cząstki poniżej linii OA jeżeli są wydłużone, to są walcowe, a powyżej tej linii są podobne do dysków.
 

Pomiar trójwymiarowy składa się z co najmniej dwóch niezależnych układów jednowymiarowych, które maja podobne linie kalibracyjne OA i OE. Pomimo różnych wymiarów w dwóch kanałach pomiarowych DC1 i DC2, mają taka sama wartość SC1.
Przy różnych poziomach szerokości SZS cząstki mogą przedstawiać różne kształty.


Praktyczne wykorzystanie sposobu dozowania dla sitowego pomiaru granulacji.


Jeżeli zastosowane dozowniki o wymuszeniu ruchu cząstek w sposób aerodynamiczny lub grawitacyjny umożliwiają jednoznaczne pomiary, to można wykorzystać je do pomiarów sitowych.
 

Dozowniki o wymuszeniu aerodynamicznym mogą rozpędzić cząstki do kilkudziesięciu m⁄s, a w dozowniku grawitacyjnym, typu rynna, cząstki spadają swobodnie.
 

Konstrukcja i wielkość przyrządu zależy od:

  1. wielkości przestrzeni pomiarowej; 
  2. do przestrzeni pomiarowej analizatora wprowadza się cząstki grawitacyjnie przy pomocy rynny lub aerodynamicznie przy pomocy innych typów dozowników;
  3. do dozowania najmniejszych cząstek do 500 μm  stosuje się dozownik z wymuszeniem ultradźwiękowym;
  4. dozowania cząstek do 2 mm stosuje się dozownik z wymuszeniem aerodynamicznym.     

 

Gdy dozuje się cząstki grawitacyjnie to używa się specjalnie ukształtowanej rynny, która zapewnia stabilny ruch ziarna w przestrzeni pomiarowej. Prędkość ruchu ziarna według wzoru Newtona wynosi: 


 

gdzie:     g- przyspieszenie ziemskie 
               h- odległość od punktu oderwania się cząstki od rynny do przestrzeni pomiarowej .

 

Kształtując odpowiednio krzywiznę i pochylenie rynny można precyzyjnie wyznaczyć punkt oderwania cząstki od rynny i określić konstrukcję rynny przedstawionej na Fig. 4.

Fig. 4 Ułożenie cząstek różnych kształtów na rynnie dozującej 
1.    Przestrzeń pomiarowa 
2.    Cząstka kulista 
3.    Cząstka dyskowa 
4.    Cząstka walcowa 
5.    Cząstka płytkowa 
6.    Wibrator
 

Cząstki o dowolnym kształcie porównuje się do typowych kształtów wzorcowych.

 

 

 

Sposób dozowania i sitowy pomiar granulacji cząstek za pomocą szczeliny optycznej 
26 września 2016